LINK BUDGET CALCULATIONS FOR HIGH ALTITUDE WEATHER BALLOON

LINK DISTANCE: 500Km (LOS)
Free space loss:

$$
\begin{aligned}
& D=500 \mathrm{Km} \\
& \mathrm{~F}=433 \mathrm{MHz} \\
& \mathrm{~L}_{\text {FS }}=32.45+20 \log (500)+20 \log (433)=(32.45+53.97+52.73) \mathrm{dB}=139.15 \mathrm{~dB}
\end{aligned}
$$

On board antenna:
Half wave dipole:
$\mathrm{G}_{\text {dipole }}=5 \mathbf{d B i}$
GCS antenna:
3 director 1 reflector Yagi Uda antenna driven by half wave folded dipole:
$G_{\text {yagi }}=12 \mathbf{d B i}$

FOR BALLOON TO GCS COMMUNICATION:

PA LNA on balloon as well as GCS.

$$
P_{\text {balloonTX }}=\mathbf{2 7} \mathbf{d B m}
$$

$$
\mathrm{L}_{\mathrm{TX}}=\mathbf{2} \mathbf{d B}
$$

$$
L_{R X}=\mathbf{2 d B}
$$

$$
L_{\text {misc }}=1 \mathrm{Db}
$$

$$
\mathrm{G}_{\mathrm{RX} _L N A}=14 \mathrm{~dB}
$$

LINK BUDGET:

$P_{R X}=P_{T X}+G_{R X} L_{N A}+G_{T X}+G_{R X}-L_{T X}-L_{F S}-L_{\text {misc }}-L_{R X}$
$P_{R X}=27+14+5+12-2-139.15-1-2=\underline{-86.15 d B m}$
RX sensitivity $(50 \mathrm{kbps})=\mathbf{- 1 0 9} \mathbf{d B m}$
Margin $=\mathbf{1 0 9 - 8 6 . 1 5 = \underline { \mathbf { 2 2 } . 8 5 ~ d B m }}$

FOR GCS TO BALLOON COMMUNICATION:

PA LNA on balloon as well as GCS.

$$
\begin{aligned}
& P_{G C S_{-} T X}=\mathbf{3 0} \mathbf{d B m} \\
& L_{T X}=2 \mathbf{d B} \\
& L_{R X}=2 \mathbf{d B} \\
& L_{\text {misc }}=1 \mathbf{D b}
\end{aligned}
$$

$\mathrm{G}_{\mathrm{RX} \text { _LNA }}=14 \mathrm{~dB}$

LINK BUDGET:

$$
\begin{aligned}
& P_{R X}=P_{T X}+G_{R X} L_{N A}+G_{T X}+G_{R X}-L_{T X}-L_{F S}-L_{\text {misc }}-L_{R X} \\
& \mathrm{P}_{\mathrm{RX}}=\mathbf{3 0}+\mathbf{1 4}+\mathbf{1 2 + 5 - 2 - 1 3 9 . 1 5 - 1 - 2 = \underline { - 8 3 . 1 5 d B m }} \\
& \text { RX sensitivity (} 50 \mathrm{kbps} \text {) } \mathbf{= - 1 0 9 \mathrm { dBm }} \\
& \text { Margin }=\mathbf{1 0 9 - 8 3 . 1 5 = \underline { 2 5 . 8 5 d B m }}
\end{aligned}
$$

